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Abstract. The high-temperature susceptibility and internal energy series have been re- 
examined for four two-dimensional isotropic spin models on a triangular lattice. They are 
the planar classical Heisenberg (PCH), infinite spin X-Y, classical Heisenberg and step 
models. For all four models we find evidence of a phase transition. This evidence is good 
for the first two models, and weak for the last two. A method of series analysis is 
developed which permits us to rule out, with some degree of confidence, an algebraic 
singularity for either the susceptibility or thc specific heat for all four models. For the PCH 
model we find the susceptibility fits the form suggested by Kosterlitz, while for the X-Y 
model susceptibility a similar conclusion may be drawn, with a lesser degree of confidence. 

1. Introduction 

The nature of the critical point (if it exists) of two-dimensional planar models has 
recently been the subject of several experimental and theoretical attacks. Mermin and 
Wagner (1 966) have proved that two-dimensional systems with finite-range 
interactions and with suitably symmetric order parameter have no spontaneous 
magnetisation at non-zero temperatures. This theorem excludes a conventional type 
of phase transition for the two-dimensional Heisenberg model, with a spherically 
symmetric interaction. A conventional phase transition is also exluded for spin 
systems with planar symmetry, including the planar classical Heisenberg (PCH) model, 
and the X-Y model. The step model introduced by Guttmann et a1 (1972) and 
discussed in some detail by Guttmann and Joyce (1973) is also a spin system with 
planar symmetry, but the Mermin and Wagner proof does not apply, as the interaction 
function has discontinuous first and higher derivatives. As far as can be judged by 
series analysis, the nature of the phase transition for this model is similar to that of the 
PCH model (Guttmann and Joyce 1973), a conclusion that also follows from the usual 
universality type arguments. 

Analysis of high-temperature susceptibility series by conventional methods has 
consistently indicated the presence of a non-regular point for all these planar models 
at some positive temperature. Thus for the two-dimensional Heisenberg model, 
Brown and Luttinger (1955) and Rushbrooke and Wood (1958) observed that con- 
ventional ratio analysis suggested a critical temperature some two-thirds that of the 
simple cubic lattice. Similar results were subsequently obtained by Stanley and 
Kaplan (1966). 

For the PCH model, Stanley (1968) and Moore (1969) find numerical evidence of a 
conventional algebraic singularity. For the S=$, X-Y model, Betts et a1 (1971) 
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found evidence of an algebraic singularity, but with a critical exponent of approxi- 
mately 1-5. This is a surprising result, as the corresponding Ising model critical 
exponent is 1.75, and we would expect the exponent for the X - Y  model-if it has an 
algebraic singularity-to be greater than that of the king model. 

Other theoretical analyses include Berezinskii (197 l ) ,  Doniach (1973), who gave 
plausible arguments for the existence of a finite non-zero critical temperature for 
two-dimensional spin systems of finite spin-space dimensionality, and Zittartz (1 976) 
who showed that the PCH model undergoes a continuous phase transition, though the 
nature of the susceptibility divergence was not determined. None of the numerical 
work is entirely convincing, in that the ratio plots seemed to possess unremovable 
curvature, so that the more series coefficients were available, the larger was the value 
of the critical exponent. (This observation has been made by several people, including 
the present author and Yamaji and Kondo (1973).) Standard Pad6 analysis also 
indicated a slightly increasing trend of exponent with number of series coefficients. 

The interpretation of this effect is rather difficult, as it could either be a ‘small n’ 
effect or indicative of a more complex type of singularity than the simple power law 
divergence normally assumed. 

Recently Kosterlitz and Thouless (1973) proposed a new definition of order for 
two-dimensional systems called topological order. Such order is based on the overall 
system properties, rather than the more normal feature, the rate of decay of inter- 
actions. The existence of vortices is shown to be temperature dependent, so that at 
low temperatures the system contains no vortices. At high temperatures however, 
when the entropy term dominates the free energy, vortices will appear spontaneously. 
The critical temperature is that at which a single vortex is likely to occur, and 
corresponds to the free energy changing sign. The Hamiltonian is split into two parts, 
one representing the vortices, the other representing spin waves. In the approxima- 
tion used, these two contributions are independent. The phase transition is produced 
by the vortex configurations alone. Kosterlitz (1974) finds for the correlation length 6 
that 

5 - exp[ b (T/ T, - 1)-!] T>T, 

[=cc T c T ,  
with b > 0 and approximately equal to 1.5 for the square lattice PCH model, and for 
the susceptibility 

where the exponent 77 has the same value (a) as for the two-dimensional Ising model. 
Above T, the free energy is found to behave like 

(1.3) A - r-’ + analytic parts. 

Thus x - A  exp[c(T/T,- 1)-”’] for T > T,, which corresponds to a more rapid 
divergence than any algebraic singularity and is an essential singularity. The non- 
regular part of the free energy, and all derivatives, vanish at T,. 

A related type of behaviour was suggested by Yamaji and Kondo (1973) on the 
basis of a Green function calculation. 

Recently Camp and Van Dyke (1975) have studied the susceptibilities of the PCH, 
X- Y and CH models in two dimensions, and found evidence to support the Kosterlitz 
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and Thouless form for the X-Y model, with weaker support for this form for the PCH 
and CH models, They also found that the ratio plots in many cases had unremovable 
curvature, as referred to above. 

In this paper we show how series analysis can be used to clearly distinguish 
between the conventional power law divergence and the essential singularity predic- 
ted by Kosterlitz. The series used are given by Moore (1969) for the CH and PCH 
model, Camp and Van Dyke (1975) for the infinite spin X-Y model and Guttmann 
and Joyce (1973) for the step model. 

The method of series analysis is discussed in the next section, while in 0 3 we 
analyse the susceptibility series and attempt to analyse the free energy series. Section 
4 is devoted to a discussion and conclusion. 

2. Method of analysis 

The conventional power law singularity normally assumed for the susceptibility of 
lattice models is 

x - C'( 1 - K/K,)-', K + K ,  (2.1) 
where K = J/kT. One standard method of estimating the critical exponent y and 
critical point K, is by forming Pad6 approximants (PA) to the logarithmic derivative of 
x. Thus 

which has a pole at K = K,  and a residue at K = K,  of -y. Consider now the 
logarithmic derivative of the logarithmic derivative, 

This has a pole at K = K, and a residue at the pole of -1. 

,y -A{exp[b(l - K/Kc)-y]}2-", 

Turning to the form of susceptibility predicted by Kosterlitz we have 

= A  exp[c(l - K/K,)-'] 
so that 

(2.5) 

which has an algebraic singularity at K = K,. Thus one might expect that the PA to the 
logarithmic derivative would show steadily increasing estimates.of y. 

An analogous situation is to form the PA to a series with an algebraic singularity, 
rather than to the logarithmic derivative of the series. As an example, table 1 shows 
the poles and residues of PA to the high-temperature susceptibility series ~ ( u )  of the 
spin-; Ising model on a triangular lattice. This function is known to have an algebraic 
singularity at o = oc = tanh(J/kT,) = 2 - 43  = 0,2679492. From table 1 it appears that 
there is evidence of a singularity in the vicinity of o = oc = 0.265, but the residues are 
increasing, in agreement with the expected behaviour. From (2.5), if we form the 
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Table 1. Poles and residues of Pad6 approximants to the high-temperature susceptibility 
of the triangular lattice Ising model. 

4 0.2547 (-0.946) 0.3675 (0.375) 
5 0.2597 (-1.370) 0.2603 (-1.453) 0.2612 (-1,593) 
6 0.2577 (-1.197)* 0.3393 (0.268) 0.2644 (-2.627) 
7 0.2638 (-2.338) 0.2642 (-2,516) 0.2643 (-2.577) 
8 0.2651 (-3.130) 0,2652 (-3.151) 

~~ 

* In this and all subsequent tables, an asterisk denotes a defective approximant, with a 
spurious pole. 

logarithmic derivative again, we obtain 

d X I  y + l  
dK x K c - K  
-In--=- 

which has a simple pole at K = K, with residue -(y + 1). Thus forming the PA to 
In div2(,y) should enable us to distinguish between an algebraic and an essential 
singularity. For the former, the residue at the pole is -1, while for the latter it is 
-y - 1. Provided that we do not have an essential singularity with a value of y close to 
zero, it should be possible to distinguish between the two types of singularity. 

For example, the high-temperature susceptibility of the spin-fi Ising model x(u) on 
a triangular lattice is known to have an algebraic singularity at uc = tanh(J/kTc) = 
2-d3=0.2679492. The last few diagonal and off-diagonal PA to 
d[ln(,y'(u)/x(~))]/du are shown in table 2. The sequences of poles and residues are 
apparently converging to the expected values of uc for the position of the pole, and -1 
for the residue, indicative of an algebraic singularity. 

Table 2. Poles and residues of Pad6 approximants to In divZ ,yo of the triangular lattice 
Ising model. 

4 0,2709 (-1.066) 0.2698 (-1.044)* 0.2700 (-1.046)* 
5 0.2674 (-0.984) 0,2678 (-0.994) 0,2679 (-0,998) 
6 0.2680 (-1.005) 0,2680 (-1.001) 0.2680 (-1.001) 
7 0.2680 (-1.001) 0,2680 (-1.001)* 

There are two points worthy of emphasis here. Firstly, forming the PA to the 
logarithmic derivative applied twice should enable us to test whether the singularity is 
of the conventional algebraic type or not. Secondly, if the sequence of poles and 
residues of the PA coverge well, and the residues converge to a value different from 
-1, this is evidence of an essential singularity of the type proposed by Kosterlitz 
(1974). 

A related analysis was carried out by Camp and Van Dyke (1975), who formed the 
PA to In div(1n x). This has the effect of converting the Kosterlitz form to a simple pole 
with a confluent singularity. The approach taken here eliminates the confluent 
singularity. 
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3. Analysis of series 

In this section we will examine the high-temperature susceptibility series, and com- 
ment on the free energy series, on the triangular lattice of three models, the X-Y, CH 
and PCH models, to which the Mermin ar.d Wagner (1966) proof applies, and to the 
step model (Guttmann et a1 1972), which exhibits similar behaviour to the PCH model, 
though (as previously discussed) the Mermin and Wagner proof does not apply. 

In table 3 the diagonal and off-diagonal PA to the logarithmic derivative (LD) of the 
susceptibility of the PCH model are shown. Apart from a different normalisation of 
K,, this is identical to the table given by Camp and Van Dyke (1975). This erratic 
table, with half the entries defective, indicates the possibility of singular behaviour 
around K, = 0.3, with an ill-defined exponent. In table 4 we show the PA to LD’ of the 
same series. This is rather better converged, with only one defective entry. A critical 
temperature of K,= 0.34 is indicated, with residue around -1.4. Most significantly, 
the residue seems to be clearly less than -1, which demonstrates that the singularity is 
not of the usual algebraic type. The convergence of the residue and critical tempera- 
ture suggests that this model has an essential singularity at the critical temperature of 
the form suggested by Kosterlitz. That is, we find 

x -A exp[c(l -K/K,)-’] 
with KC.=0.34 and ~ ~ 0 . 4  in surprisingly good agreement with the value of y = 0-5 
suggested by Kosterlitz on the basis of heuristic arguments. 

Table 3. Poles and residues of Pad6 approximants to In div ,yo of the triangular lattice PCH 
model. 

2 0.309 (-2.40) 0.310 (-2.44)* 
3 0.306 (-2.32)* 0.306 (-2*31)* 0,313 (-2.56) 
4 0.306 (-2.32)* - 0.328 (-3.70) 
5 0.326 (-3.43) 

Table 4. Poles and residues of the Pad6 approximants to In div2 ,yo of the triangular lattice 
PCH model. 

~~ 

2 0.318 (-1.10)* 0.359 (-1.59) 
3 0.277 (-0.88) 0.329 (-1.22) 0.337 (-1.34) 
4 0.344 (-1.49) 0.340 (-1.39) 

Turning now to the X-Y model, we show in table 5 the LD Q to the triangular 
lattice susceptibility (in agreement with Camp and Van Dyke 1975), and in table 6 the 
LO’ PA. In table 5 we see slightly erratic entries. There is evidence of a singularity 
around K,=O.9, with an exponent seemingly in the range 3-4. In table 6 we see 
similarly erratic behaviour, though the entries appear somewhat better converged, 
with evidence of a singularity around K, = 0.9-0.95, with ill-converged residue, 
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Table 5. Poles and residues of Pad6 approximants to In div ,yo of the triangular lattice 
S =CO, X-Y model. 

- - 2 
3 0.858 (-3.13) 0.883 (-4.250) 0.873 (-3.65) 
4 0.876 (-3.84) 0,967 (-29.6)* 0.863 (-3.21) 
5 0,876 (-3.42) 

Table 6. Poles and residues of Pad6 approximants to In div2 ,yo of the triangular lattice 
S = 03. X-Y model. 

N [NIN-l] [NINI [NIN+ 11 

2 0.924 (-1.59) 0.926 (-1.61) 
3 0.926 (-1.60) 0.924 (-1.59)* 0.949 (-1.75)* 
4 0.933 (-1.65)* 0,911 (-1.51) 

possibly around -1.6, but one which shows no sign of settling down to -1, which 
would be the case if this function had an algebraic singularity. 

Thus for the X-Y model we conclude that there is evidence for a singularity, but 
that it is not of the conventional algebraic type. However the evidence supporting the 
Kosterlitz form is weaker than for the PCH model. (See however the note added in 
proof .) 

In tables 7 and 8 we give the LD PA and L D ~  PA to the CH model susceptibility. Note 
that due to the spherical symmetry of this model, the vortex excitations characteristic 
of the Kosterlitz argument are not applicable. Table 7 contains very little useful 
information, except that it permits the observation that the CH model is not analysable 
by LD PA. Table 8 is slightly better and suggests the possible presence of a singularity 
around K ,  = 0.4, with a residue too erratic to estimate. 

Table 7. Poles and residues of Pad6 approximants to In div ,yo of the triangular lattice CH 
model. 

N [NIN-11 fN/N1 [NIN + 11 

3 -  0,333 (-3.30)* - 
2 -  0.375 (-6.07)* 0.376 (-6*32)* 

4 -  - 
5 -  

Table 8. Poles and residues of Pad6 approximants to In div’ ,yo of the triangular lattice CH 
model. 

N [N/N-l]  

2 0.404 (-1.685) 0.406 (-1.716)* 0.393 (-1.592)* 
3 0.365 (-1*332)* 0.422 (-1.844) - 
4 1.399 (-62.37) - 
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Our conclusion for this model is therefore similar to that for the X-Y model. The 
singularity does not appear to be of conventional type, but there is insufficient 
evidence for an essential singularity of the form (2.5). 

Our results for the step model are shown in tables 9 and 10. The LD PA are 
somewhat erratic, though some evidence of a singularity around K, = 0.45 is present. 
The LD' PA are no better, and if anything, slightly worse. No evidence of convergence 
is detectable. The large residues however, are consistent with the absence of a 
conventional algebraic singularity. 

Table 9. Poles and residues of Pad6 approximants to In div ,yo of the triangular lattice step 
model. 

~ ~~ 

N [NIN - 11 [NINI [ N / N +  11 

3 0.457 (-2.13) 0.430 (-1.77)* - 
2 0.441 (-1.86) 0.461 (-2.22) 

4 0.536 (-4.99) 

Table 10. Poles and residues of Pad6 approximants to In div2 xo of the triangular lattice 
step model. 

~~ 

N [NIN - 11 "1 [ N / N +  11 

2 1.067 (-10.7) 0.777 (-4.37) 
3 0.511 (-0.80) 0.719 (-3.35) 0.758 (-4.10) 
4 1.233 (-68.0) 

Thus for no model do we find evidence of a conventional algebraic singularity. For 
the PCH model an essential singularity of the Kosterlitz type is indicated. For the 
infinite spin X - Y  model there is some evidence of an essential singularity. For the CH 
model there is slight evidence of an essential singularity, but the evidence is very 
weak. For the step model there is some evidence for a singularity, but no convincing 
evidence for either an essential or an algebraic singularity. 

Analysing the free energy, or equivalently, the internal energy series is much more 
delicate than analysing the susceptibility, as any non-analytic part is likely to vanish at 
the critical temperature. That is, as T +  T,, the analytic part, (probably) being 
non-vanishing will dominate the expansion rather than the non-analytic part. 

Nevertheless, if the analytic part can be reasonably represeiited by a constant, the 
method of analysis we have applied to the susceptibility series still applies. We have 
therefore attempted an analysis of these series in an identical manner mutatis 
mutandis to that employed in the analysis of the susceptibility series. We confine 
ourselves to the same models on the triangular lattice. 

For the X - Y  model, we find the series too short to analyse. Betts (1977) has 
pointed out that later terms in the series are incorrect, which increases the difficulties 
of analysis! 

For the remaining three models, the LD PA (not shown) gave no evidence of 
converging. The LD' PA (not shown) appeared to converge for the CH and PCH 
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models. However, in both cases the residues are close to zero. This is characteristic of 
an analytic function. Thus either there is no detectable non-analyticity in the free 
energy, or, more likely, it is masked by the dominant additive analytic term. This last 
possibility would be consistent with the Kosterlitz form. 

4. Conclusion 

We have investigated the question of the existence and nature of a phase transition for 
a number of two-dimensional lattice models whose order-parameter symmetries are 
inconsistent with a conventional phase transition. 

For the PCH and X-Y model high-temperature susceptibilities we find: ( a )  strong 
evidence of a phase transition at real, positive temperature; (b )  that the nature of the 
singularity is not of the conventional algebraic type; and (c) for the PCH model, the 
form suggested by Kosterlitz is well supported, while for the X-Y model this 
conclusion is weaker. 

This part of our work duplicates to some extent the earlier work of Camp and Van 
Dyke (1975). With their method of analysis, they found quite strong evidence of an 
essential singularity of the Kosterlitz type for the infinite spin X-Y models. Their 
results, taken in combination with those presented here, strengthen conclusion ( b )  
above. 

For the CH and step models we find: ( a )  weak evidence of a phase transition at 
real, positive temperatures; and ( b )  the available evidence points away from a con- 
ventional algebraic singularity. 

Since this work was completed, Monte Carlo studies by Suzuki et a1 (1977) support 
our results in the case of the X-Y model. 
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Note added in proof. Following a suggestion by the referee we have estimated c and 
re-estimated Kc, defined by (3. l),  by forming Pad6 approximants to (f(x))'/', where 
f(x) is the logarithmic derivative of the susceptibility series. For the PCH model, with 
y =Os4 in (3.1) we obtain K,=  0-340*0~002 and c = 1-34*0*07. With y = O s 5  (as 
suggested by Kosterlitz 1974) we find K c =  0,345 *0.006 and c = 1 .5  *O-3. That is, 
y = 0.4 as obtained from the LD' series, gives estimates of K,  and c which are better 
converged. 

For the infinite spin X - Y  model, with y = O . 5  we obtain Kc=0.91*0.01 and 
c =  1.25*0.1, while with y = 0 . 4  we find Kc=0.90*0.01 and c = 1.04*0.08. Thus 
this calculation strengthens our tentative conclusion of an essential singularity of the 
Kosterlitz type for this model, but in this case y = 0.5 seems as likely as y = 0.4, the 
value estimated for the PCH model. 

For the step model and CH model we find no apparent convergence of Pad6 
approximants to (f(x))'/'. This is consistent with the ill-converged behaviour of Pad6 
approximants to In div f ( x ) ,  as discussed earlier. 
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